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Abstract: We present the study of the dynamics of a two-ring waveguidestructure
with space-dependent coupling, constant linear gain and nonlinear absorption. This
system can be implemented in various physical situations such as optical waveguides,
atomic Bose-Einstein condensates, polarization condensates, etc. It is described by two
coupled nonlinear Schrddinger equations. For numerical simulations we take local
Gaussian coupling (single-Gaussian and double-Gaussian). We find that, depending on
the values of involved parameters, we can obtain several interesting nonlinear
phenomena, which include spontaneous symmetry breaking, modulational instability
leading to generation of stable circular flows with various vorticities, stable
inhomogeneous states with interesting structure of currents flowing between rings, as
well as dynamical regimes having signatures of chaotic behavior. In this paper, we
only focused on consider phenomenon of spontaneous symmetry breaking in the case
of space dependent coupling. The results show that in the case of a coupling between
the two rings is a function of single-Gaussian symmetry breaking only between rings.
In contrast, in the case of a coupling between them as a double-Gaussian function, the
symmetry breaking occurs only in each ring, breaking the symmetry of the space
dependent coupling.

1. Introduction

Spontaneous symmetry breaking is an important concept in many areas of
physics. A fundamentally simple symmetry breaking mechanism in electrodynamics
occurs between counter-propagating electromagnetic waves in ring resonators, mediated
by the Kerr nonlinearity. In the nonlinear media, the symmetry breaking phenomenon has
been studied in many different models. The spontaneous symmetry breaking of soliton
and phase transitions trapped in a double-channel potential [1]. Recently, scientists have
focused on studying for double-channel, the symmetry breaking not only between two
channels but also in each channel [2]. In the ring resonators, the earliest paper studied
discontinuous behavior in the onset of spontaneous symmetry breaking, indicating
divergent sensitivity to small external perturbations [3].

Coupled microrings are a natural laboratory studying different phenomena in both
optics and Bose-Einstein condensates (BECs). In optics, they are used for nonreciprocal
devices [4], switches [5], loss control of lasing [6] and ring lasers [7]. In the case of
atomic Bose-Einstein condensates the ring-shaped geometry allows to obtain persisting
superfluid currents and consider their interaction with various types of the defects. It is
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reason why dynamics of atomic BECs loaded in toroidal traps have been intensively
explored experimentally [8] and studied theoretically both in the full three-dimensional
toroidal geometry [9] and within the framework of the reduced quasi-one-dimensional
Gross-Pitaevskii equation (GPE) with periodic boundary conditions [10]. Coupled non-
Hermitian microcavities are also used for the study of chiral modes in exciton-polariton
condensates [11] as well as for modeling coupled circular traps for BEC, where gain
corresponds to adding atoms while nonlinear losses occur due to inelastic two-body
interactions.

Additionally, for the cyclic geometry, many applications of the system appear due
to different physical properties, for example the (cubic) nonlinearity. All considered
problems are based on the same mathematical model. In optical systems, the Kerr
nonlinearity is as a result of the fact that the refractive index of the medium depends on
the intensity of the light, and in the mean-field theory of condensates, it appears due to
two-body interactions.

In this paper we consider a model of two coupled ring waveguides with constant
linear gain and nonlinear absorption with space-dependent coupling. The coupling
between two waveguides is single-Gaussian or double-Gaussian. As it has been
emphasized above, this system can be implemented in various physical situations such as
optical waveguides, atomic Bose-Einstein condensates, polarized condensates, etc. It is
described by two coupled nonlinear Schrddinger equations. It has been found that
depending on the values of involved parameters, we can obtain several interesting
nonlinear phenomena, which include spontaneous symmetry breaking. We concentrated
on studying symmetry breaking of states between two waveguides and in each
waveguide.

2. The Model

In the present study, we consider a model described by two coupled nonlinear
Schrddinger equations with gain and nonlinear loss (depending on the applications, they
also can be termed Gross—Pitaevskii or Ginzburg-Landau equations), which is written
down in scaled dimensionless units as following:

{iatllh = =071 + iy + (1 = iD) |1 1%Py + ] (DY, (1)
10, = =02, + iy, + (1 — iD) [P, >, + ] ()1,

Obviously, ¥, and v, are the fields in the first and second waveguides, y is the
linear gain and I" is the nonlinear loss. Both are considered as constants along the
waveguides, and J(x) is the position depending on coupling.

The first application of model (1) can be found in a reference [12], where the
discussed rings coupled homogeneously, i.e., where it was assumed that J(x) is constant.
The model with local single-Gaussian coupling modulation has been considered [13]. In
current work we continue study originated in publication [13] and we also introduce new
model in which the J(x) is local double-Gaussian coupling modulation.

In numerical calculations we assume, without loss of generality, that x € [—m, 7t].
This implies periodic boundary conditions for both channels: y;(x,t) = ¥;(x + 2m,t),
and the coupling function J(x) is concentrated in a certain region of the rings. In
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particular, for numerical simulations, we shall consider local Gaussian coupling in the
following form in two cases:

JG) =L exp(-2), 2)

a?

0= dfor (L) (-2 0

where a is the width of the coupling, while J, characterizes the coupling strength. Our
results are not sensitive to the particular shape of the wavefunction, as we have checked
using super Gaussian functions rised to high power n.

For all applications mentioned in the Introduction, the meaning of the variable x
is an angle defining a point on the circumference. The functions ), , are envelopes of the
field distributions (see, e.g., [14] for optical resonators and the total fields [15] for BECs
applications). Most of the results found in the present study are numerical. For the
uncoupled case (J,= 0), one can find stable background solutions in the form:

Pia(0) = ﬁe‘¥f . @)

These solutions are implemented in both channels and then are used as initial
state in our numerical investigations.

When the rings become coupled, due to the interplay between gain and nonlinear
absorption, they lead to modulation instability. In the case of constant coupling in [12],
two distinct classes of solutions have been found analytically: symmetric, characterized
by ;= ¥,, and anti-symmetric with i, = —,. The anti-symmetric solutions are
always stable, whereas symmetric ones are usually unstable. Therefore, we decided to
perform numerical studies using the symmetric state as the initial condition.

We found various final states obtained after long time evolution: different types
of the solutions included, stationary anti-symmetric, symmetric and asymmetric solutions
and stationary time dependent states. In particular, when coupling is spatially dependent
and relatively narrow (small in comparison with the ring length), the results can be
stable, stationary states (including those with broken symmetry), or time dependent limit
cycles states.

The initial state with small perturbation imposed is in the form:

Yia(x,t = 0) = ﬁ(l + Bsin(kx)), (5)

where the perturbation B was typically of the order of 10°. In our simulations, we took
the value of the loss I'=1, the coupling strength J,=1.5, the width of Gaussian coupling is
narrow a = 0.01 in two cases (single-Gaussian coupling and double-Gaussian coupling)
and change the linear gain coefficient y. We noticed that the results do not depend on
particular values of the amplitude of the perturbation S or perturbation wavenumber k.
All simulations were performed using the so called “Pseudospectral method” and “Split-
Step-Fourier method” [16].
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3. Results and discussion
3.1. Stationary solution

We considered the cases when we fix the coupling strength J, = 1.5, the
nonlinear loss I'=1, the width of Gaussian coupling a = 0.01 (namely narrow coupling)
and change the gain parameter y. Note that we always start from the perturbed symmetric
state given in equation (5). For the model with the single-Gaussian coupling, the dark
soliton state appeared when the y < 0.70 and when the y = 1.05, we obtained anti-
symmetric stationary solutions with one-peak. It was interesting that we obtained
oscillation asymmetric states when the linear gain was in the range 0.7 < y < 1.05 (we
will study in more detail in section 2 and section 3). For the model with the double-
Gaussian coupling we also obtained the same results. When the y < 0.38, symmetric
stationary solution with one-peak is found and asymmetric stationary solution with two-
peak obtained with y = 0.72. When 0.38 <y < 0.72, we also obtained oscillation
asymmetric states.

In addition, we also considered cases of two above models when the width of
Gaussian coupling is broad (which will briefly called broad coupling, here we choose the
width of Gaussian function a = 1), specifically, for both the two models with the single-
Gaussian coupling and double-Gaussian coupling, the parameters areas of the linear gain
y in which leads to the oscillation asymmetric states is smaller in comparison with
narrow coupling case. The other regions of the linear gain y gave us stationary states.
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Fig. 1. Absolute values of stationary states after propagation long time
in the coupled double-ring system (1) obtained for the initial conditions (5)
with =1, J, = 1.5,a=0.01.
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Fig. (a): Symmetric dark solitons calculated for different small linear gain for the single-
Gaussian coupling. Fig. (b): Antisymmetric states calculated for different small linear gain for the
single-Gaussian coupling. Fig. (c): Symmetric solutions calculated for different small linear gain
for the double-Gaussian coupling. Fig (d): Asymmetric solutions calculated for different linear
gain for the double-Gaussian coupling.

3.2. Spontaneous symmetry breaking in model with single-Gaussian coupling

3.2.1. Narrow coupling case

In this section, we considered symmetry breaking in single-Gaussian model and
fix the parameters as: nonlinear loss I' = 1, the coupling strength J, = 1.5, the width of
Gaussian coupling a =0.01, whereas we change linear gain y. We used Pseudospectral
Method to simulate propagation of wave function for different values of the linear gain y
with initial symmetry state given in Eq. (5). As it has been mentioned in section 1, when
vy < 0.55 we obtained symmetry stationary solution and see that spontaneous symmetry
breaking did not appear, clear that in Fig. 2(a;) present absolute values of other states as a
function of time, Fig. 2(b;) show the curve of norm Nj practically coincides with the
curve of the norm N, corresponding to the linear gain y = 0.55. When the linear gain is
in the domain 0.55 < y < 1.05, we see that spontaneous symmetry breaking between
two rings occurred. The symmetry breaking was illustrated by difference between norm

N; and N, (with N; = f:;olzpilzdx). This difference can be seen clearly in Fig. 2(b,) and
2(b3). As we has been mentioned previously, when 0.7 < y < 1.05 the propagation of
wavefunction oscillated with different frequencies that is, there is symmetry breaking
phenomenon in that range. We also found that the spontaneous symmetry breaking did
not occur when the gain increased y = 1.05.
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Fig. 2: Top row: Absolute values of other states, Fig. (a1) and (a4) are stationary
states with the y = 0.55, 1.05, respectively, do not symmetry breaking; Fig. (a;) and (as)
are asymmetric states with the y = 0.6, 0.9, respectively. Bottom row: Norm values of
wavefunctions, Fig. (b1) and (bs) have N; = N, that meaning do not occur symmetry
breaking between two rings; Fig. (b2) and (bs) have N; # N, that meaning occur
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symmetry breaking between two rings. The under figures are corresponding to the up
figures about parameters. All above case use parameters: I' = 1, J, = 1.5, a = 0.01.

3.2.2. Broad coupling case

In the opposite limit, when the range of the coupling is comparable to the length
of the ring (but not uniform yet), we also observe the spontaneous symmetry breaking,
and we classify them according to the (increasing) value of linear gain. We present
results for a=1, performed simulation almost through all the range of y and obtained the
results as below. When the linear gain y < 0.35, dynamics leads directly to the
symmetric stationary states. The spontaneous symmetry breaking occurred with 0.35 <
¥y < 0.51. When the y = 0.51, dynamics leads directly to the anti-symmetric stationary
states. The oscillation asymmetric states occurred when the linear gain belongs to the
domain 0.42 <y < 0.50.
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Fig. 3: Top row: Absolute values of other states, Fig. (a) and (d) are stationary states
with the y = 0.35, 0.51, respectively; Fig. (b) and (c) are asymmetric states with the
y = 0.36,0.50, respectively. Bottom row: Norm values of wavefunctions, Fig. (e) and (h)
have N; = N, that meaning do not occur symmetry breaking between two rings; Fig. (f)
and (g) have N; # N, that meaning occur symmetry breaking between two rings. The
under figures are corresponding to the up figures about parameters. All above case use
parameters I’ = 1, J, = 1.5, a=0.01.

In summary, in this section we have examined the symmetry breaking between
two rings for the model with single-Gaussian coupling with both two cases: narrow
coupling and broad coupling. The symmetry breaking between two rings occurred in two
cases. Each case had different parameter regions of linear gain. The parameter value
regions for y in broad coupling case are smaller than for narrow coupling case.
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3.3. Spontaneous symmetry breaking in model with double-Gaussian
coupling

3.3.1. Narrow coupling case

We next considered the model of double-Gaussian coupling. As in the model of
single - Gaussian coupling we also fix the nonlinear loss I' = 1, coupling strength
Jo = 1.5, width of Gaussian coupling a = 0.01 and change linear gain y. We obtained the
results that the spontaneous symmetry breaking between two rings did not occurred but
in each ring spontaneous symmetry breaking occurred. The symmetry breaking in this
case was featured by asymmetric ratio:
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Fig.4: Top row: Contour plots of absolute values of the propagated wavefunction i, in
the stationary regime for four different linear gain, from left to right corresponding to
y = 0.4,0.6,0.77,0.78 and the fixed width a = 0.01. Bottom row: The asymmetric ratio
in first wavefunction, defined in equation (6). The under figures are corresponding to the
up figures about parameters. All above case used parameters I' = 1, J, = 1.5, a = 0.01.

In narrow coupling case, when y < 0.38 or 0.72 <y < 0.77 we obtained the
stationary states and symmetry breaking which are not occurred. The oscillation
asymmetric states appeared in range of the linear gain 0.38 < y < 0.72, the asymmetric
states of course there is symmetry breaking. Final domain is y > 0.77, the asymmetric
states appeared in this range and have symmetry breaking. The Fig. 4(e) and 4(h) show
the ©,0f wavefunction ¥, at y = 0.4. We see that it is a constant different from zero
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which proves that here is stationary state and have symmetry breaking. The Fig. 4(b) and
4(f) show oscillation asymmetric states. In this case, we see that the asymmetric ratio
oscillation varies around the zero and circulates with respect to time, implying that the
symmetry breaking is periodicity.

3.3.2. Broad coupling case

Now we considered the broad coupling case (here we choose the width coupling
a=1) for the double-Gaussian coupling. For broad coupling we obtained the parameter
regions y < 0.07 and y = 1.1 in which the stationary states obtained, whereas when
0.07 < y < 0.19 the oscillation asymmetric states obtained, Fig. 5b, 5c present contour
plots of absolute values of the propagated wave function y; at y = 0.08 and y = 0.18,
respectively. The asymmetry states also found in range of linear gain 0.19 <y < 1.1,
have symmetry breaking phenomenon in each ring. The figures 5 (a), (b), (c), (e), (f), (9),
(h) are the cases of threshold points which have shifted from given state to other state.
Specifically, when y = 0.07 (look at Fig. 5 (a), (e)), we found the asymmetric stationary
states while the oscillation asymmetric states are obtained with y = 0.08. The results
were the same that the oscillation asymmetric states obtained with y = 0.18 and
asymmetric stationary states with y = 0.19.

Thus in model with the double-Gaussian coupling we only found the symmetry
breaking in each ring, whereas we did not find the symmetry breaking between two rings.
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Fig. 5: Top row: Contour plots of absolute values of the propagated wavefunction iy, in the
stationary regime for four different linear gain, from left to right corresponding to y =
0.07,0.08,0.18,0.19 and the fixed width a = 1. Bottom row: The asymmetric ratio between of
two wavefunctions, defined in equation (6). The under figures are corresponding to the up figures
about parameters. All above case use parameters I’ = 1, J, = 1.5, a=1.
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4. Conclusion

In this paper, we have studied the symmetry breaking both for the single-
Gaussian and double-Gaussian model for nonlinear loss I' =1 and coupling strength
Jo = 1.5, with changing linear gain y, in two cases: narrow coupling and broad coupling.
We found the results that for same linear gain parameter regions different kind of
symmetry breaking exists. For the model of single-Gaussian coupling the symmetry
breaking occurred between two rings while these phenomena occurred in each ring for
the model of double-Gaussian coupling. In addition, we found parameter areas where the
oscillation asymmetric states, symmetric stationary states, anti-symmetric stationary
solutions appeared. Specially, the dark soliton state appeared in the model of single-
Gaussian coupling. Further studies of this system are planned and they may bring some
new and exciting results.
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TOM TAT

SUPHA VO POI XUNG TU' PHAT
TRONG BQ CONG HUONG VONG LIENKET
VO| KHUECH PAI TUYEN TiNH VA MAT MAT PHI TUYEN

Ching t6i nghién cru mo hinh cua hai vong 6ng dan s0ng Voi khuéch dai tuyén tinh, hip
thy phi tuyén khong d6i va lién ket phu thude khong gian. Hé nay c6 thé thyc hién trong cac linh
vuc vt 1y khac nhau nhu trong 6ng dan séng quang hoc, nguyén tir ngung tu Bose-Einstein, su
ngung tu phan cuc, v.v... Hé dugc miéu ta bai hé phuong trinh Schrodinger. Doi véi két qua md
phong s, chiing toi st dung lién két dang ham Gauss cuc bo (dang don Gauss va hai Gauss).
Ching toi tim thay rang tly thudc vao cac gié tri tham sb lién quan, thu dugc mot sb hién tuong
tha vi bao gom su pha v& doi xang tu phat, su bat 6n dinh din t6i cac dong tuan hoan véi cac
x0ay tlly y, trang thai khong déng nhat vai cau trdc thi vi cua cac dong giira cac vong, ciing nhu
ché do dong hoc co dau hiéu cua trang thai hdn loan. Trong bai bao nay, chung toi chi tap trung
chu yéu vao hién tuong pha va di xang tu phat. Két qua cho thay rang trong truong hop lién két
giita hai vong 1a ham don Gauss sy pha v& dbi xing chi xay ra gitra cac vong voi nhau. Nguoc
lai trong trong truong hop lién két gitra chiing la ham hai Gauss thi sy pha v& di xang lai chi
xay ra trong mdi vong, pha v tinh doi xang cua lién két khdng gian.
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