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Abstract: We present the study of the dynamics of a two-ring waveguidestructure 

with space-dependent coupling, constant linear gain and nonlinear absorption. This 

system can be implemented in various physical situations such as optical waveguides, 

atomic Bose-Einstein condensates, polarization condensates, etc. It is described by two 

coupled nonlinear Schrödinger equations. For numerical simulations we take local 

Gaussian coupling (single-Gaussian and double-Gaussian). We find that, depending on 

the values of involved parameters, we can obtain several interesting nonlinear 

phenomena, which include spontaneous symmetry breaking, modulational instability 

leading to generation of stable circular flows with various vorticities, stable 

inhomogeneous states with interesting structure of currents flowing between rings, as 

well as dynamical regimes having signatures of chaotic behavior. In this paper, we 

only focused on consider phenomenon of spontaneous symmetry breaking in the case 

of space dependent coupling. The results show that in the case of a coupling between 

the two rings is a function of single-Gaussian symmetry breaking only between rings. 

In contrast, in the case of a coupling between them as a double-Gaussian function, the 

symmetry breaking occurs only in each ring, breaking the symmetry of the space 

dependent coupling. 

 

1. Introduction 

Spontaneous symmetry breaking is an important concept in many areas of 

physics. A fundamentally simple symmetry breaking mechanism in electrodynamics 

occurs between counter-propagating electromagnetic waves in ring resonators, mediated 

by the Kerr nonlinearity. In the nonlinear media, the symmetry breaking phenomenon has 

been studied in many different models. The spontaneous symmetry breaking of soliton 

and phase transitions trapped in a double-channel potential [1]. Recently, scientists have 

focused on studying for double-channel, the symmetry breaking not only between two 

channels but also in each channel [2]. In the ring resonators, the earliest paper studied 

discontinuous behavior in the onset of spontaneous symmetry breaking, indicating 

divergent sensitivity to small external perturbations [3]. 

Coupled microrings are a natural laboratory studying different phenomena in both 

optics and Bose-Einstein condensates (BECs). In optics, they are used for nonreciprocal 

devices [4], switches [5], loss control of lasing [6] and ring lasers [7]. In the case of 

atomic Bose-Einstein condensates the ring-shaped geometry allows to obtain persisting 

superfluid currents and consider their interaction with various types of the defects. It is 
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reason why dynamics of atomic BECs loaded in toroidal traps have been intensively 

explored experimentally [8] and studied theoretically both in the full three-dimensional 

toroidal geometry [9] and within the framework of the reduced quasi-one-dimensional 

Gross-Pitaevskii equation (GPE) with periodic boundary conditions [10]. Coupled non-

Hermitian microcavities are also used for the study of chiral modes in exciton-polariton 

condensates [11] as well as for modeling coupled circular traps for BEC, where gain 

corresponds to adding atoms while nonlinear losses occur due to inelastic two-body 

interactions.  

Additionally, for the cyclic geometry, many applications of the system appear due 

to different physical properties, for example the (cubic) nonlinearity. All considered 

problems are based on the same mathematical model. In optical systems, the Kerr 

nonlinearity is as a result of the fact that the refractive index of the medium depends on 

the intensity of the light, and in the mean-field theory of condensates, it appears due to 

two-body interactions. 

In this paper we consider a model of two coupled ring waveguides with constant 

linear gain and nonlinear absorption with space-dependent coupling. The coupling 

between two waveguides is single-Gaussian or double-Gaussian. As it has been 

emphasized above, this system can be implemented in various physical situations such as 

optical waveguides, atomic Bose-Einstein condensates, polarized condensates, etc. It is 

described by two coupled nonlinear Schrödinger equations. It has been found that 

depending on the values of involved parameters, we can obtain several interesting 

nonlinear phenomena, which include spontaneous symmetry breaking. We concentrated 

on studying symmetry breaking of states between two waveguides and in each 

waveguide. 

2. The Model 

In the present study, we consider a model described by two coupled nonlinear 

Schrödinger equations with gain and nonlinear loss (depending on the applications, they 

also can be termed Gross–Pitaevskii or Ginzburg-Landau equations), which is written 

down in scaled dimensionless units as following: 

       {
         

         (    )|  |
     ( )  

         
         (    )|  |

     ( )   
 (1) 

Obviously,    and    are the fields in the first and second waveguides,   is the 

linear gain and   is the nonlinear loss. Both are considered as constants along the 

waveguides, and   ( ) is the position depending on coupling. 

The first application of model (1) can be found in a reference [12], where the 

discussed rings coupled homogeneously, i.e., where it was assumed that  ( ) is constant. 

The model with local single-Gaussian coupling modulation has been considered [13]. In 

current work we continue study originated in publication [13] and we also introduce new 

model in which the  ( ) is local double-Gaussian coupling modulation.  

In numerical calculations we assume, without loss of generality, that   [    ]. 

This implies periodic boundary conditions for both channels:   (   )    (      ), 

and the coupling function  ( ) is concentrated in a certain region of the rings. In 
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particular, for numerical simulations, we shall consider local Gaussian coupling in the 

following form in two cases: 

 ( )  
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where a is the width of the coupling, while    characterizes the coupling strength. Our 

results are not sensitive to the particular shape of the wavefunction, as we have checked 

using super Gaussian functions rised to high power n.  

For all applications mentioned in the Introduction, the meaning of the variable   

is an angle defining a point on the circumference. The functions      are envelopes of the 

field distributions (see, e.g., [14] for optical resonators and the total fields [15] for BECs 

applications). Most of the results found in the present study are numerical. For the 

uncoupled case (  = 0), one can find stable background solutions in the form: 

    ( )  √
 

 
  

 

 
 
 . (4) 

These solutions are implemented in both channels and then are used as initial 

state in our numerical investigations. 

When the rings become coupled, due to the interplay between gain and nonlinear 

absorption, they lead to modulation instability. In the case of constant coupling in [12], 

two distinct classes of solutions have been found analytically: symmetric, characterized 

by   =   , and anti-symmetric with       . The anti-symmetric solutions are 

always stable, whereas symmetric ones are usually unstable. Therefore, we decided to 

perform numerical studies using the symmetric state as the initial condition.  

We found various final states obtained after long time evolution: different types 

of the solutions included, stationary anti-symmetric, symmetric and asymmetric solutions 

and stationary time dependent states. In particular, when coupling is spatially dependent 

and relatively narrow (small in comparison with the ring length), the results can be 

stable, stationary states (including those with broken symmetry), or time dependent limit 

cycles states.  

The initial state with small perturbation imposed is in the form: 

    (     )  √
 

 
(      (  )),  (5) 

where the perturbation   was typically of the order of 10
-2

. In our simulations, we took 

the value of the loss  =1, the coupling strength   =1.5, the width of Gaussian coupling is 

narrow a = 0.01 in two cases (single-Gaussian coupling and double-Gaussian coupling) 

and change the linear gain coefficient  . We noticed that the results do not depend on 

particular values of the amplitude of the perturbation   or perturbation wavenumber  . 

All simulations were performed using the so called “Pseudospectral method” and “Split-

Step-Fourier method” [16]. 
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3. Results and discussion 

3.1. Stationary solution 

We considered the cases when we fix the coupling strength       , the 

nonlinear loss  =1, the width of Gaussian coupling   = 0.01 (namely narrow coupling) 

and change the gain parameter  . Note that we always start from the perturbed symmetric 

state given in equation (5). For the model with the single-Gaussian coupling, the dark 

soliton state appeared when the        and when the         we obtained anti-

symmetric stationary solutions with one-peak. It was interesting that we obtained 

oscillation asymmetric states when the linear gain was in the range            (we 

will study in more detail in section 2 and section 3). For the model with the double-

Gaussian coupling we also obtained the same results. When the       , symmetric 

stationary solution with one-peak is found and asymmetric stationary solution with two-

peak obtained with       . When            , we also obtained oscillation 

asymmetric states.  

In addition, we also considered cases of two above models when the width of 

Gaussian coupling is broad (which will briefly called broad coupling, here we choose the 

width of Gaussian function    ), specifically, for both the two models with the single-

Gaussian coupling and double-Gaussian coupling, the parameters areas of the linear gain 

  in which leads to the oscillation asymmetric states is smaller in comparison with 

narrow coupling case. The other regions of the linear gain   gave us stationary states.  

  

  

Fig. 1: Absolute values of stationary states after propagation long time 

in the coupled double-ring system (1) obtained for the initial conditions (5) 

with  =1,        , a = 0.01. 

(a) (b) 

(c) (d) 
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Fig. (a): Symmetric dark solitons calculated for different small linear gain for the single-

Gaussian coupling. Fig. (b): Antisymmetric states calculated for different small linear gain for the 

single-Gaussian coupling. Fig. (c): Symmetric solutions calculated for different small linear gain 

for the double-Gaussian coupling. Fig (d): Asymmetric solutions calculated for different linear 

gain for the double-Gaussian coupling. 

3.2. Spontaneous symmetry breaking in model with single-Gaussian coupling 

3.2.1. Narrow coupling case 

In this section, we considered symmetry breaking in single-Gaussian model and 

fix the parameters as: nonlinear loss    , the coupling strength       , the width of 

Gaussian coupling   =0.01, whereas we change linear gain  . We used Pseudospectral 

Method to simulate propagation of wave function for different values of the linear gain   

with initial symmetry state given in Eq. (5). As it has been mentioned in section 1, when 

       we obtained symmetry stationary solution and see that spontaneous symmetry 

breaking did not appear, clear that in Fig. 2(a1) present absolute values of other states as a 

function of time, Fig. 2(b1) show the curve of norm N1 practically coincides with the 

curve of the norm N2 corresponding to the linear gain       . When the linear gain is 

in the domain            , we see that spontaneous symmetry breaking between 

two rings occurred. The symmetry breaking was illustrated by difference between norm 

   and    (with    ∫ |  |
   

  

  
). This difference can be seen clearly in Fig. 2(b2) and 

2(b3). As we has been mentioned previously, when            the propagation of 

wavefunction oscillated with different frequencies that is, there is symmetry breaking 

phenomenon in that range. We also found that the spontaneous symmetry breaking did 

not occur when the gain increased        .  

    

    

Fig. 2: Top row: Absolute values of other states, Fig. (a1) and (a4) are stationary 

states with the             , respectively, do not symmetry breaking; Fig. (a2) and (a3) 

are asymmetric states with the          , respectively. Bottom row: Norm values of 

wavefunctions, Fig. (b1) and (b4) have       that meaning do not occur symmetry 

breaking between two rings; Fig. (b2) and (b3) have        that meaning occur 

(a1) 
(a2) (a3) 

(a4) 

(b1) 

(b2) 

(b4) 

(b3) 
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symmetry breaking between two rings. The under figures are corresponding to the up 

figures about parameters. All above case use parameters:    ,       ,   = 0.01. 

3.2.2. Broad coupling case 

In the opposite limit, when the range of the coupling is comparable to the length 

of the ring (but not uniform yet), we also observe the spontaneous symmetry breaking, 

and we classify them according to the (increasing) value of linear gain. We present 

results for a=1, performed simulation almost through all the range of   and obtained the 

results as below. When the linear gain       , dynamics leads directly to the 

symmetric stationary states. The spontaneous symmetry breaking occurred with      

      . When the       , dynamics leads directly to the anti-symmetric stationary 

states. The oscillation asymmetric states occurred when the linear gain belongs to the 

domain             .  

    

    

Fig. 3: Top row: Absolute values of other states, Fig. (a) and (d) are stationary states 

with the             , respectively; Fig. (b) and (c) are asymmetric states with the 

           , respectively. Bottom row: Norm values of wavefunctions, Fig. (e) and (h) 

have       that meaning do not occur symmetry breaking between two rings; Fig. (f) 

and (g) have       that meaning occur symmetry breaking between two rings. The 

under figures are corresponding to the up figures about parameters. All above case use 

parameters    ,       , a = 0.01. 

In summary, in this section we have examined the symmetry breaking between 

two rings for the model with single-Gaussian coupling with both two cases: narrow 

coupling and broad coupling. The symmetry breaking between two rings occurred in two 

cases. Each case had different parameter regions of linear gain. The parameter value 

regions for    in broad coupling case are smaller than for narrow coupling case.  

(a) (b) (c) (d) 

(e) (h) 
(g) 

(f) 
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3.3. Spontaneous symmetry breaking in model with double-Gaussian 

coupling 

3.3.1. Narrow coupling case 

We next considered the model of double-Gaussian coupling. As in the model of 

single - Gaussian coupling we also fix the nonlinear loss    , coupling strength 

      , width of Gaussian coupling   = 0.01 and change linear gain  . We obtained the 

results that the spontaneous symmetry breaking between two rings did not occurred but 

in each ring spontaneous symmetry breaking occurred. The symmetry breaking in this 

case was featured by asymmetric ratio:  

   
∫ |  |

    
  
 ∫ |  |

   
 
  

∫ |  |
   

  
  

.                                                  (6) 

       

    

Fig.4: Top row: Contour plots of absolute values of the propagated wavefunction    in 

the stationary regime for four different linear gain, from left to right corresponding to 

                    and the fixed width   = 0.01. Bottom row: The asymmetric ratio 

in first wavefunction, defined in equation (6). The under figures are corresponding to the 

up figures about parameters. All above case used parameters    ,       ,   = 0.01. 

In narrow coupling case, when        or             we obtained the 
stationary states and symmetry breaking which are not occurred. The oscillation 
asymmetric states appeared in range of the linear gain            , the asymmetric 

states of course there is symmetry breaking. Final domain is       , the asymmetric 
states appeared in this range and have symmetry breaking. The Fig. 4(e) and 4(h) show 

the   of wavefunction    at      . We see that it is a constant different from zero 

(a) 

(e) (f) (g) (h) 

(b) (c) (d) 
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which proves that here is stationary state and have symmetry breaking. The Fig. 4(b) and 
4(f) show oscillation asymmetric states. In this case, we see that the asymmetric ratio 
oscillation varies around the zero and circulates with respect to time, implying that the 
symmetry breaking is periodicity. 

3.3.2. Broad coupling case 

Now we considered the broad coupling case (here we choose the width coupling 
a=1) for the double-Gaussian coupling. For broad coupling we obtained the parameter 

regions        and       in which the stationary states obtained, whereas when 
            the oscillation asymmetric states obtained, Fig. 5b, 5c present contour 

plots of absolute values of the propagated wave function    at        and       , 

respectively. The asymmetry states also found in range of linear gain           , 
have symmetry breaking phenomenon in each ring. The figures 5 (a), (b), (c), (e), (f), (g), 
(h) are the cases of threshold points which have shifted from given state to other state. 

Specifically, when        (look at Fig. 5 (a), (e)), we found the asymmetric stationary 

states while the oscillation asymmetric states are obtained with       . The results 

were the same that the oscillation asymmetric states obtained with        and  

asymmetric stationary states with       .  
Thus in model with the double-Gaussian coupling we only found the symmetry 

breaking in each ring, whereas we did not find the symmetry breaking between two rings.  

    

        
Fig. 5: Top row: Contour plots of absolute values of the propagated wavefunction    in the 

stationary regime for four different linear gain, from left to right corresponding to   
                    and the fixed width   = 1. Bottom row: The asymmetric ratio between of 

two wavefunctions, defined in equation (6). The under figures are corresponding to the up figures 
about parameters. All above case use parameters    ,       ,  =1. 

(a) (b) (c) (d) 

(e) (h) (f) (g) 
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4. Conclusion 

In this paper, we have studied the symmetry breaking both for the single-

Gaussian and double-Gaussian model for nonlinear loss     and coupling strength 

      , with changing linear gain  , in two cases: narrow coupling and broad coupling. 

We found the results that for same linear gain parameter regions different kind of 

symmetry breaking exists. For the model of single-Gaussian coupling the symmetry 

breaking occurred between two rings while these phenomena occurred in each ring for 

the model of double-Gaussian coupling. In addition, we found parameter areas where the 

oscillation asymmetric states, symmetric stationary states, anti-symmetric stationary 

solutions appeared. Specially, the dark soliton state appeared in the model of single-

Gaussian coupling. Further studies of this system are planned and they may bring some 

new and exciting results. 
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TÓM TẮT 

 

SỰ PHÁ VỠ ĐỐI XỨNG TỰ PHÁT  

TRONG BỘ CỘNG HƯỞNG VÒNG LIÊN KẾT  

VỚI KHUẾCH ĐẠI TUYẾN TÍNH VÀ MẤT MÁT PHI TUYẾN 
 

 

Chúng tôi nghiên cứu mô hình của hai vòng ống dẫn sóng với khuếch đại tuyến tính, hấp 

thụ phi tuyến không đổi và liên kết phụ thuộc không gian. Hệ này có thể thực hiện trong các lĩnh 

vực vật lý khác nhau như trong ống dẫn sóng quang học, nguyên tử ngưng tụ Bose-Einstein, sự 

ngưng tụ phân cực, v.v… Hệ được miêu tả bởi hệ phương trình Schrödinger. Đối với kết quả mô 

phỏng số, chúng tôi sử dụng liên kết dạng hàm Gauss cục bộ (dạng đơn Gauss và hai Gauss). 

Chúng tôi tìm thấy rằng tùy thuộc vào các giá trị tham số liên quan, thu được một số hiện tượng 

thú vị bao gồm sự phá vỡ đối xứng tự phát, sự bất ổn định dẫn tới các dòng tuần hoàn với các 

xoáy tùy ý, trạng thái không đồng nhất với cấu trúc thú vị của các dòng giữa các vòng, cũng như 

chế độ động học có dấu hiệu của trạng thái hỗn loạn. Trong bài báo này, chúng tôi chỉ tập trung 

chủ yếu vào hiện tượng phá vỡ đối xứng tự phát. Kết quả cho thấy rằng trong trường hợp liên kết 

giữa hai vòng là hàm đơn Gauss sự phá vỡ đối xứng chỉ xẩy ra giữa các vòng với nhau. Ngược 

lại trong trong trường hợp liên kết giữa chúng là hàm hai Gauss thì sự phá vỡ đối xứng lại chỉ 

xẩy ra trong mỗi vòng, phá vỡ tính đối xứng của liên kết không gian. 

 

 

  

 

 

 

 

 

 

 


